A Viewfactor Based Radiative Heat Transfer Model for
Telluride

Austin Minnich
UC Berkeley

John Turner
LANL

Michael Hall
LANL

Outline

1. Where this fits into Telluride

2. Radiosity Ideas and Background
Viewfactors

The algorithm

Results from the algorithm

S vk W

Future Work

Where this fits into Telluride

e Before the casting operation begins, the mold is heated.

e We need the final temperature distribution of the mold to pass
to Telluride.

The final temperature distribution of the mold is given by:

oT

QM = Gconv T Gcond T Qrad

The conduction and convection modules are already in Telluride.

We need the radiation term, ¢,qq-

Currently, Telluride uses the boundary condition:
mws. — \PSNWQ.AHNJW — MJ93®V

for the q,qq term.

K is the only factor for viewfactors, emissivity, etc.

e Since thermal radiation varies as T4, radiative heat transfer is
very important in determining the final temperature
distribution of the mold.

e So we need a more accurate model to make sure the final

temperature distribution is correct.

A more accurate model

This is what we have done this summer.

Our code takes into account:
e viewfactors
e occlusion

It does this using principles from radiosity.

Radiosity

Radiosity is often used in graphics to model scenes with diffuse

surfaces.

It has one very simple idea:
The total energy leaving a face is equal to the sum of the
emitted energy and the reflected energies.

Mathematically, this reads:
B; = oeT} + p;XB; F;
e p; is the reflectance of face i
e B;, B; are the total energies from faces i,]

o [;; is the viewfactor from face i to face]

If we rewrite the last equation like this:

Q.@M,& = ms — \QsMumuNuﬁ

We can turn the last expression into a system of equations:

This is the deceptively simple radiosity equation.

—pkFi2
1

—pk32

—pFis
—pLog
1

—pFin

—pkaop

—pEsn
1

oeT}
oely

4
oely

4
oel,

The Radiosity Equation

1. The solution of the radiosity equation is the total energy
leaving each face.

2. It is guaranteed to converge by Gauss-Seidel or other iterative

methods because it is diagonal dominant.

3. In order to generate this system of equations, we must

calculate viewfactors.

4. Once we solve the system, we can easily determine the net

radiant flux, ¢,qq4.

Viewfactors

But first we must figure out the viewfactors.

Definition: A wviewfactor is the fraction of energy emitted from an

area A; in all directions directly intercepted by another area A;.

The formal mathematical definition of a viewfactor is:

dA;dA; cos0; cosb;
3.@&.

&NUS. =

We evaluate this expression in its vector form:

\w&ﬁﬁ\wuﬁﬁ
|| Rij||?

mtﬂ& =

u, is the unit vector of R;;, the vector joining the two faces, and A,

and xr. are area vectors normal to the surface.

A normal i

normal

Figure 1: Example between two differential areas

10

Why viewfactors are important

e Viewfactors tell us how much energy from a face i actually goes

to another face j.

e If these factors are calculated accurately, then we can be very
accurate about how much energy goes from each face i to every

other face j.

e This leads to a very accurate model for radiative heat transfer,

meaning our net radiant flux matrix will be accurate.
e This makes our final temperature distribution more accurate.

e So viewfactors are essential to obtaining an accurate solution.

11

¢l

FIGURE 5-26 Geometry of unit-sphere method for obtaining configuration factors.

Figure 2: The Nusselt unit sphere

13

The algorithm

We need to form the viewfactor matrix so we can solve the system

of equations.
But we can’t just calculate the viewfactors for every face.
We have to make sure that the faces are visible to each other first.

The general form of the algorithm is:

14

For all facesi and |

Test to seeif
facesi and |
see each other

If yes calculate
viewfactor

if no, compare
another pair

when finished
solve system of
equations

Output solution

Figure 3: General flow chart for the algorithm

15

The Tests: The Dot Product Tests

First Dot Product Test: Check to see if the faces point in the same
direction by taking the dot product of the two area vectors.

This would pass.

Figure 4: dot product is negative

This would not pass.

Figure 5: dot product is positive

16

The Second Dot Product Test

This test eliminates those faces pointing in opposite directions.

Figure 6: These two examples both have negative dot products, but
only the top example is correct. This is solved by the second dot
product test.

17

Occlusion

If the pair of faces pass the dot product tests, then we know they

face each other.

But, we need to make sure there is nothing in the way before we

can calculate the viewfactor.

In other words, we need to make sure, from the point of view of
face i, that there is no face k in the way of face j.

facei

R E— -

facej

B

face k

Figure 7: Example of a possible occlusion.

18

The Occlusion Routine

Occlusion is very hard to detect. Here is how the program does it.

For each tace
| Rotate Coordinate System

For each face |
Project into xy plane

For each face k
| Project into xy plane

| Compare projections

If overlap: store index of overlapping fa
If no overlap: try another face

If none overlap: use facej in calculation
If overlap: use closest face in calculation

Figure 8: flow chart for the occlusion subroutine.

19

The Viewfactor Matrix

The viewfactor matrix is an n by n matrix which contains all the
viewfactors from every face i to every other face j (n is the number

of faces).

All of these tests help fill the viewfactor matrix.

e If a face fails any of these tests, then the viewfactor matrix at
that index is set to 0.

o If a face passes all these tests then the viewfactor is calculated

and stored in the matrix.

e If a face j is occluded by a face k, the viewfactor for face j is set
to 0, and the viewfactor for face k is calculated and stored in

the matrix.

20

Problems with our Occlusion Routine

Our routine does not handle partial occlusions.

Erroneous Occlusion

Figure 9: Our occlusion subroutine will register this as an occlusion

even though face k occludes very little of face j.

21

Relating Radiosity and Net Radiant Flux

After we have solved the system of equations, we have a matrix
with the radiosity of each face.

We need to get the net radiant flux and then the
temperature(remember, we are still trying to get the final

temperature distribution of the mold).

To get the net radiant flux, all we need to do is this:

Qrad — m@ — Ns

I, = %B;F,,

22

Relating Net Radiant Flux and Temperature

Once we have the net radiant flux, we get temperature by:

o7

Qm = QGconv T Qcond T Qrad

Using this program for q,.,q4, we can now get an accurate
temperature distribution for the mold.

23

Results

To test the program, we ran the program on several spherical

meshes and looked at how each sphere interacted with the others.

The following pictures are of net radiant flux, not of temperature.
Thus an area that looks colder means that that area has less net
radiant flux. This means that there is more incident radiation on

the area.

Here are some pictures.

24

Future Work

So far we have worked on this code independent of Telluride. We

now need to:

e Integrate the program into Telluride. John will probably do
this after the workshop.

e Parallelize the code. This will also probably happen after the

workshop.

25

